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Background



From Matrices to Tensors

Tensors are multi-linear generalisations of arrays.

Generalising to tensors

• Data - natural representation

• No well defined rank, and to find one is a NP-hard problem

• There are N modes for a Tensor of order N
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EEG

ElectroEncephaloGram (EEG) capture voltage fluctuations in the brain measured
with the use of electrodes, in a non-invasive manner.

• High temporal resolution

• Unusual behaviour offers insights into neurological problems (e.g. epilepsy)

Sensor positions for EEG on the scalp

Problem 1: Separation

Superposition of neural activity, noise and undesirable distortions.

Noise made of biological or technical artifacts
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Decomposition by ICA

Independent Component Analysis performs a full rank matrix factorization into
statistically independent components

X = B · c

=
R∑
i
cibTi

=
R∑
i
Yi

Assumptions:

• PDFs are not Gaussian

• Statistical independence

Works on artifacts that occur often and coherently, such as eye movements.
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Notations and Definitions: Signal Processing

Short Time Fourier Transform

Temporal localisation of the Fourier spectrum x(t) using the shifted window function
of fixed duration and shape. Assumption: each segment is stationary (likely valid for small time windows)

STFT illustration
Fixed Time and Frequency resolution

STFT(t, f ) =
∫ ∞

−∞

(
x(t)w∗(t − t

′
)
)
e−2πjftdt

Wf (s, u) =
∫ ∞

−∞
x(t)

1
√
s
ψ

∗(
t − t

′

s
)dt

(1)

Wavelet transforms: the coefficients are functions of position and scale.
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Notations and Definitions: EEG

Epoch

An extracted time window from the continuous signal, that is time locked relative to
an event/baseline.

Traditional analysis uses of Event Related Potentials (ERPs).

ERPs

ERP components formed by averaging epochs.

Small amplitudes of ’true’ signal =⇒ EEG very sensitive to artifacts

EEG Tensors
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Theoretical hypothesis



Decomposition methods

View 1 of extending matrix decompositions

CP Decomposition:

χi1,i2,..,id = u(d)1 ⊗ u(d−1)
1 ⊗ ...⊗ u(1)1 + ... + u(d)R ⊗ u(d−1)

R ⊗ ...⊗ u(1)R

χ ≈
R∑
r=1

λrb(1)r ◦ b(2)r ◦ ... ◦ b(d)r

(2)

Rank

Smallest number of rank one components that generate χ as their sum

Alternating least square algorithm individually optimises each component
Tensor decomposition for data mining from brain electrical responses Divyansh Manocha 7/ 22



Decomposition methods

View two of extending matrix decompositions

Tucker Decomposition:

χ ≈
R1∑
r1=1

...

RN∑
rN=1

κr1,r2...rN (u
(1)
r1 ◦ u(2)r2 ◦ ... ◦ u(N)rN )

= κ×1 U(1) ×2 U(2)...×N U(N)

= [[κ;U(1),U(2), ...,U(N)]]

(3)

HOSVD or HOOI
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Why EEG and Tensors

Properties

EEG signals are non-stationary, non-linear and not Gaussian in general
Spatially correlated to their neighbouring channels. Shown by Ille et al. (2002).

Parafac
For a particular channel p, Y can be written as shown in equation 4.

(Y i)channel p = ai · ci,p · b
T
i

ai · b
T
i represents the time frequency distribution

(4)

Observations

• Each channel will only vary by a scale factor: ci
• Non-stationarity(ish) can now be represented if ai · bTi is rank one

• Atoms from CPD must be rank one

Tensor decomposition for data mining from brain electrical responses Divyansh Manocha 9/ 22



Theoretical analysis of EEG and Tensors

Problem 2: Practical issue in measuring EEG

Moving temporal sources in the assumed synchronous channels (brain activity,
sweating or muscle tension). Observable in scalograms.

(Left) Time series view of the channels from the real reading dataset. (Right) Generated scalogram
of the dataset. Arrowed lines indicates asynchronicity.

Slow time shifts change zero level across channels considerably
Difficult to prevent at high frequency recordings from different spatial locations.
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PARAFAC2

PARAFAC2

Definition: A generalised CPD model:

χ̂ =
R∑
i=1

ai ◦ (Fi · diag(ci) (5)

matrix Fi · diag(ci) is new time-varying channel signature.

Allows evolution of channel signatures over time.
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Measuring performance



Synthetic Data

Multivariate Gaussian distribution using noise covariance from a real recording. Using
MNE from Gramfort et al. (2014).

Simulation process

EEG, EOG (blinks) and Gaussian noise only
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Real Data

Measured signal

Two datasets obtained from Henderson et al. (2015), Gramfort et al. (2014).
Need to extract only the neural activities.

PSD
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Artifact removal using Tensor

Decomposition



Method

Baseline ICA

ICA solves BSS explicitly. Empirical mode decomposition (as applied by Mandic et al.
(2013)) considers each channel separately.

Artifact removal using decomposition methods

Known ground truth

• Correlation coefficient and relative mean squared error

Unknown ground truth

• Correlation between the reconstructed/clean signal with the original signal

• Power percentage change: channel view

• Entropy measures (turned out to be less useful)
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Artifact Removal using Tensors

Projection onto the the null space of the artifact components, and reconstruction using x⊥

=⇒ χclean = κ×1 U(1)(I− ÂÂ†)×2 U(2)...×N U(N) (6)

The isolation of the components corresponding to artifacts is conducted through
qualitative examination in this study.
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Examples

Reconstruction using decomposition based BSS

Demonstrations on Jupyter Notebooks available
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https://github.com/divyanshmanocha/EEGTensors


Results: Synthetic

[Top] Relative Root Mean Squared Error (RRMSE) as on varying signal to noise ratios. [Bottom]
Averaged Pearson’s correlation coefficient on all electrodes over varying signal to noise ratios.
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Results: Real

• Observation 1: Parafac and Parafac2 are better than Tucker - correlation

• Observation 2: Not in low rank cases
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Improvements using Data fusion

and optimisations



CMTF

• Coupled analysis of heterogeneous data

• Simultaneous MEG, EEG factorisation

Results

CMTF considerably worse: directly losing 2% of neural information

Example for the MNE dataset

CMTF did not perform well on rrmse, correlation coefficient on synthetic data
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Optimisations

• Randomised CPD implementation (<2% time improvements)

• Core Consistency Diagnostics implementation (optimal rank ≈ 30)

• Performance optimisations (e.g. Randomised CPD)
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Conclusion



A unified method

Why Tensors

Better performance using simultaneous time frequency analysis
But also insights into other, not so visually distinctive features. Consider line noise
power.

The power (measured by RMS) was reduced from 103.5 to 7.93 in relative units.
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Contributions

EEG with Tensor Decomposition

Theoretical justification of advantages, leading to PARAFAC2
Hypothesis Development

Artifact extraction

Describing a method, from a geometrical perspective, of removing artifacts in Parafac
and Tucker family

Implementations to a tensor toolbox

RandomisedCPD, PARAFAC2, CMTF, CORCONDIA (CPD, TUCKER)
No other implementation of Parafac2, CORCONDIA available

Comparison

Developing quantification methods
Comparison: qualitative and quantitative
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Questions?

Tensors for EEG: https://github.com/divyanshmanocha/EEGTensors

HottBox: https://github.com/hottbox/hottbox
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Further work

• More efficient algorithms for large datasets

• In-depth analysis of higher order dimensions: more subjects and trials

• A probabilistic approach using Bayesian statistics to incorporate a priori
information

• Bayesian Information Criteria (BIC) with Core Consistency Analysis

• Further analysis of time drift. Parafac on time drift corrected EEG better than
Parafac2?



Wavelets or STFT

Figure 1: (a) Time and spectral resolution in STFT are fixed, whilst they can be altered in Wavelet
Transforms. As can be seen for Wavelet Transforms, increasing the resolution of one decreases the
resolution of the other. (b) Spectogram plot of FP1 channel from EEG with at two different time
resolutions, demonstrating a clear difference in frequency resolution. The real (reading) dataset
used in this project has been depicted with a morelet wavelet.



Optimisations

CORCONDIA implementation for rank selection

Randomised (Truncated) SVD for Parafac2 and Tucker. Core tensor G must be a
superdiagonal array of ones (the identity I matrix in the two dimensional case).
CORCONDIA simply exploits this by measuring the similarity between the
superdiagonal core Tand least-squares fittedG. In other words it is measuring the
‘superdiagonality‘.

CORCONDIA = 100
(
1−

∑R
i=1
∑R

j=1
∑R

k=1(gijk − tijk)2)
R

)
(7)

The results from the core consistency analysis are shown in Figure ??. They suggest
that, for the size of the dataset used, ≈ 24− 32 components for the Synthetic dataset,
27− 32 for the MNE dataset and 28− 32 for the real dataset are most appropriate.



Optimisations

Randomised CPD
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