MATCHING DESCRIPTIONS WITH CODE FRAGMENTS
BY LEARNING DEEP JOINT EMBEDDINGS

Research Proposal
Divyansh Manocha

ABSTRACT

Numerous software engineering tasks, including re-factoring, detecting bugs or
understanding complicated APIs, significantly benefit from finding semantically
similar or equivalent fragments of code. Not being able to do this is not only
an impediment for development that requires system-specific knowledge, but also
for future software maintainability and evolution. This proposal suggests two so-
lutions: (1) search using descriptions and (2) generating comments from code,
which can also serve as augmented data. The former may be achieved by learning
a joint embedding, applied to the application of searching for code using natural
language descriptions, it aims to reduce system-wide duplication. For the latter, a
novel variational recurrent neural machine translation model is proposed, inspired
by the recent advancements in neural variational inference and generative latent
variable models for language processing.

1 CONTEXT

With the rise of large scale open code collaborations within systems such as companies or research
communities, a major issue that has largely not been addressed yet is the ability to assist a program-
mer through reusability of existing code. Recently (Koschke & Bazrafshan,|2016) conducted a large
clone-rate survey from 7,800 open-source C/C++ projects, finding 44% of the projects have at least
one identical (type 1) clone fragment. 80% have type 2 or more (see below for definition). The
clone-rate was found to be ~ 12% for type 2.

Code duplication presents challenges in software maintenance, where they require similar bug fixes
or refactors to multiple locations. To be able to tackle this problem, it is essential to be able to search
for and identify semantically similar code. In the cases where APIs developed are complicated,
searching for keywords in the system is the only option present to developers, which is often very
time consuming and seldom achieves desired results. This is a different approach to the problem than
analysing the system to then identify and remove duplicates, primarily through visual techniques as
described by Rieger et al.| (2004)).

The problem of identifying duplication is very different to presenting aggregate statistics for simi-
larity, as is used in plagiarism detection tools. State of the art algorithms that do not rely on deep
learning largely focus on syntactic similarity, as semantics is a very difficult problem. These can be
categorised into the following:

o Strings: Code fragments used as contiguous sequence of strings

e Tokens: Lexer converts fragments into token sequences, where a similar sub-sequence can
be identified (Kamiya et al., 2002) (Li et al., |2004)

e Tree: Using an abstract syntax tree (AST) representation of the fragment, parsed sub-trees
are identified (Baxter et al., 2004)

Generally, the accepted definition for categories of clone types is as defined by (Roy et al., [2009).
Type 1: Fragments identical except for variations in whitespace, comments or layouts. Type 2:
Identical fragments except for variations in the names of user-defined identifiers (e.g. variables,
class, methods, etc.). Type 3: In addition to the differences in Type 2, the fragments have modified
statements added, modified or deleted. Therefore they are still syntactically similar, and semantically

identical. Type 4: Semantic similarity that has the same functionality, but is syntactically dissimilar.
Examples of each are shown in Appendix[A]

Deep learning techniques should particularly outperform traditional statistical methods for type 4,
which is still an active area of research. Recent advancements in multimodal learning, particularly
in the context of translation, has led to significant improvements in Natural Language Processing
(NLP) . Hindle et al.| (2012) suggested that source code can be treated as a natural language with
semantics just as rich as that found in text.

Embeddings map discrete tokens to real-valued vectors, thereby translating data in a relatively low
dimension space to higher dimensional vectors representation. This has become a very popular
technique for machine learning, especially on a larger corpus (dataset). The idea behind joint em-
beddings is to project two separate sources in the same higher-dimensional vector space (e.g. text
comments with the code snippets), learnt through a neural net or log-linear model architecture Wang
et al.[(2018)). This also allows searching based on the semantics of the input, rather than its syntax,
using similarity measures.

A common approach to a problem of this nature requires an embedding that does not assume each
word represents the document from the corpus equally, as with Word2Vec. Information retrieval
using TF-IDF (term frequency-inverse document frequency) penalises common words by assigning
them lower weights whilst giving importance to words that are less frequent in the entire corpus
but frequent in a few documents Sparck Jones| (1988). These are commonly applied at word level,
N-gram level or character level. From here topics that contain the best information in the collection
are identified using techniques such as LDA (Linear Discriminant Analysis).

2 RELEVANT LITERATURE

There have been several recent advances in text processing and generation recently. Most notably,
(Radford et al.l |2019) (Radford et al.l [2018)) use supervised fine tuning on an unsupervised model
based on the Transformer architecture (Vaswani et al.,2017)) to achieve state of the art performance.
Unlike other models that use recurrence and convolutions, this is solely based on attention mecha-
nisms and achieved state of the art quality in translation and document generation. (Miao et al.,[2016))
presented a neural variational framework that combines a continuous document representation with
a generative bag of words model, inspired by variational auto-encoders (Kingma et al., |2014). This
framework is able to learn to model the posterior instead of just analytic approximations, and can
therefore use an inference network such as RNN or CNN to learn non-linear distributions through
backpropagation.

2.1 JOINT EMBEDDINGS

Recent embedding methods have been based around maximising correlation between the projected
vectors from the two sources in the shared latent space, such as Canonical Correlation Analysis
(CCA) (Wang et al.; 2015)). Several extensions have also been proposed that kernelize the method or
apply them in a deep learning framework. Due to its limited scalability, a more common approach
is to produce a joint embedding using SGD with a ranking loss. However, this does not outperform
CCA.

Kiros et al.| (2014) introduced an encoder-decoder pipeline that learns the joint embedding space
(images and text) by minimising a pairwise ranking loss and a language model that decodes the
representation. This pipeline has already been successful in Neural Machine Translation. This was
followed by the very successful RNN based model from |Vinyals et al.| (2014), adopting a similar
model.

(Hu et al.l 2018) formulate code comment generation as a neural machine translation task, based
on the Sequence-to-Sequence (Seq2Seq) learning framework with attention. Specifically, they im-
plement a two-layered LSTM with 512-dimensional word embeddings. However, they focus on
comment generation rather than searching.

There has only been one study, to the best of the authors knowledge, that addresses the same prob-
lem: DeepCSGu et al,| (2018). In a similar fashion to the afore mentioned research, they project
to a higher dimensional space to make queries and source code lexically comparable. An interest-

ing architecture of two deep neural net pipelines was formed where bi-directional LSTMs are used
for each split of information appropriate from the code database (method name, api sequence and
tokens), embedded with description. Therefore it allows for associative search - not only seeking
snippets with matched keywords but also recommends those without matched keywords but are
semantically related.

2.2 NEURAL MACHINE TRANSLATION

Neural machine translation (Cho et al.| |2014) (Sutskever et al., |2014), unlike statistical machine
translation, aims to tune a single, large neural network for the task of translation. There has been
a wealth of literature on NMTs that are trained multilingual systems, through knowledge transfer,
implementing multiway translation and multi-source translation. However, most of the literature
surrounding machine translation has largely focused on natural languages.

The dominant approach is the encoder-decoders paradigm in which sentences in a corpus are en-
coded to a fixed-length (or sometimes variable-length) vector and a decoder generates the transla-
tions. LSTMs and RNNs are commonly used as the non-linear encoder function defining a hidden
state hy = f(x¢, hee1),q({h1,...,hr} = hp. The decoder defines a joint probability over the
translation y, decomposing into conditionals where each conditional probability is modelled with a
RNN or some de-convolutional neural network. Sampling and Greedy search are commonly used to
perform decoding.

Neural variational inference (Kingma & Welling| |2014) approximates the posterior of a generative
model, and has been demonstrated to be successful for topic modelling (Miao et al., 2017) - where
the models are parametrised with neural networks and trained with variational inference. CNN based
models (Gehring et al., 2017) have also achieved good performance, but the current state of the art
is the Transformer model (Vaswani et al., [2017) which is fully attention based (Self-Attention with
feed-forward connection). This is largely the fundamental architecture of the very successful GPT
and BERT models (Radford et al.,|2019) (Radford et al.,[2018)).

(Zhang et al.,[2016) proposed a variational NMT in which they incorporate a latent random variable
intended to to represent the underlying semantics of the sentence. (Shah & Barber, |2018)) introduce a
latent variable that is explicitly designed to learn the semantic meaning, by modelling the probability
distribution of the sentence rather than the conditional probability of the target sentence given the
current: p(y|x) = [po(y|z, x)pe(z|x)dz. The authors show that their model places higher reliance
on the latent variables and achieves superior performance in cases of missing words.

2.3 NEURAL CODE CLONE IDENTIFICATION

The first proposal of language models and embeddings for clone detection was proposed by (White
et al.,|2016), in which they employ an unsupervised fisse and use technique. They develop a frame-
work that trains for lexical analysis through RNNs using tokens, and syntactic analysis through a
recursive auto-encoder.

(L1 et al., [2017b)) apply a token-based pair by pair method comparison approach using deep neural
networks, in which they directly extract features based on different categories of tokens in source
code. Therefore it learns patterns from previously trained method pairs.

(Biich & Andrzejak, [2019) employ a supervised AST-based Recursive Neural Network, based on
(Jiang et al., |2007), in which tree patterns are recursively aggregated until one characteristic vector
root is found that represents the entire tree. A Siamese Network was used to compare the outputs
with shared weights.They used Area Under the Curve (AUC) for the Receiver Operating Character-
istic (ROC) for evaluation. They also find that pretrained embedding representing nodes in ASTs
has been a key to performance improvements.

Dividing the current literary work on neural languages into two classes, of explicit models that re-
quire restriction of relevant context; and implicit models that attempt to represent the co-occurrence
patterns of tokens in a high-dimensional real-valued parameter space. The former primarily rely on
n-gram frequency, which make a prediction considering only the previous n — 1 tokens and have
been proven to be scalable and effective. Deep learning models such as RNNs are commonly used
for the latter, where they extract latent representations of text (Mikolov et al., 2011)).

3 RESEARCH QUESTION

Each questions should result in it’s own research task.

One of the fundamental questions outstanding would be Is it possible to learn embeddings that
can be used to effectively search and translate between code and description? There has been
some indication in literature that this is possible (Biich & Andrzejak, [2019) (L1 et al., 2017b) |Gu
et al.[(2018) however, the author believes capturing semantic context seems to be a general area for
improvement. This is evident from the ranks of the output of the model that often display partially
relevant results higher than close to exact ones.

The proposal questions whether extending the work by (Shah & Barber| |2018) to the case of RNNs
will obtain a variational recurrent NMT that should theoretically be able to model more complex
dependencies between timesteps. There has been an attempt by (Su et al., |2018)) inspired by the
Variational Recurrent Neural Network as an extension of VAEs, to propose a variational recurrent
NMT. However, their approach is based on the work by (Zhang et al.| 2016)) which, as discussed in
Section[2.2] does not model the probability distribution of a sentence.

Does searching for system-wide code duplication of code fragments improve with deep joint embed-
dings? This will extend the work by (Biich & Andrzejak,[2019) and (L1 et al., 2017b), that search on
embeddings solely based on code. Similarity measures that perform well in high dimensions should
be able to provide a better search mechanism.

Finally, as an extension to the previous questions, can information from ASTs be embedded in the
encoder for generating better comments in the proposed architecture? Software code has well de-
fined semantics as opposed to natural language, which we can take advantage of when considering
embeddings and distance metrics that address the problem. This has previously been employed by
(L1 et al.,2017a) and (Biich & Andrzejakl 2019), who show that pretrained embedding representing
nodes in ASTs and an attention mechanism has been a key to performance improvements.

4 AIMS AND OBJECTIVES

On a high level, the proposal aims to determine whether it is possible to use the same embeddings
to generate comments for undocumented code, as well as matching descriptions to functions in
programs.

The results of this study should be three folds:

e To contextualise mappings between code and comments/description.

e To be able to search for code using natural language text, and therefore effectively search
for duplicate code fragments.

e To infer descriptions for undocumented code fragments.

The research objectives include to be able to search for an existing code fragment, if one exists in the
databases, that structurally performs what has been specified by a user in the description comments
of an unimplemented piece of code. An interesting application that should also result from this is to
generate code comments and/or api documentation for code. In the case of Sphinxdocumentation,
code comments are already required to be well structured, which can be leveraged in experiments.

5 SIGNIFICANCE OF RESEARCH

Code duplication has received increasing attention from industry and reverse-engineering research
communities. Due to the poor collaboration (which includes communication through documenta-
tion) amongst teams in a large organisation, a lot of effort is wasted into reinventing methods which
adversely leads to re-introducing and re-fixing common bugs. Code duplication is also a general
problem in machine learning models of source code as it leads to significant bias. The ability to
detect and reduce system-wide code duplication should also allow further advancements in machine
learning models based on code (Allamanis}, [2019)).

'www.sphinx-doc.org

Although there has been some work related to image captioning and therefore generating comments
in a similar manner to that suggested here, there has not been any specifically tailored to addressing
code duplication by suggesting from existing source code/api corpuses, based on comments written
for an un-implemented method.

6 FUTURE DIRECTIONS OF RESEARCH

e Consider batch scenarios in this proposal, where learning can be expensive but (testing)
should not be. Potential future work could explore a continual setting.

e Potential work around contextualised neural code completion. The estimated posterior
from this study should serve as a useful starting point.

e A lot of the time multiple languages make up frameworks, e.g. typescript react, config
yamls, python, etc. There has been significant work to develop a generic NMT for multiple
human languages recently, which can be a further direction of research.

REFERENCES

Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of code. In
Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pp. 143153, 2019.

Ira D Baxter, Christopher Pidgeon, and Michael Mehlich. Dms/spl reg: program transformations for
practical scalable software evolution. In Proceedings. 26th International Conference on Software
Engineering, pp. 625-634. IEEE, 2004.

Lutz Biich and Artur Andrzejak. Learning-based recursive aggregation of abstract syntax trees
for code clone detection. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 95-104. IEEE, 2019.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1724—1734, Doha, Qatar, Oc-
tober 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://www.aclweb.org/anthology/D14-1179.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International Conference on Machine Learning, pp. 1243—
1252, 2017.

X. Gu, H. Zhang, and S. Kim. Deep code search. In 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE), pp. 933-944, 2018.

Abram Hindle, Earl Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the naturalness
of software. Proceedings - International Conference on Software Engineering, pp. 837-847, 06
2012. doi: 10.1109/ICSE.2012.6227135.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation. In 20718
IEEE/ACM 26th International Conference on Program Comprehension (ICPC), pp. 200-20010.
IEEE, 2018.

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In 29th International Conference on Software Engi-
neering (ICSE’07), pp. 96-105. IEEE, 2007.

T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions on Software Engineering, 28(7):654—670,
2002. doi: 10.1109/TSE.2002.1019480.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. stat, 1050:10, 2014.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. Advances in neural information processing systems, 27:

3581-3589, 2014.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel. Unifying visual-semantic embeddings
with multimodal neural language models. CoRR, abs/1411.2539, 2014. URL http://arxiv.
org/abs/1411.2539.

Rainer Koschke and Saman Bazrafshan. Software-clone rates in open-source programs written in
c or c++. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 3, pp. 1-7. IEEE, 2016.

Jian Li, Yue Wang, Michael R Lyu, and Irwin King. Code completion with neural attention and
pointer networks. arXiv preprint arXiv:1711.09573, 2017a.

Liuqging Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner: A deep learning-
based clone detection approach. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 249-260. IEEE, 2017b.

https://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1411.2539
http://arxiv.org/abs/1411.2539

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: A tool for finding copy-
paste and related bugs in operating system code. In OSdi, volume 4, pp. 289-302, 2004.

Yishu Miao, Lei Yu, and Phil Blunsom. Neural variational inference for text processing. In Interna-
tional conference on machine learning, pp. 1727-1736, 2016.

Yishu Miao, Edward Grefenstette, and Phil Blunsom. Discovering discrete latent topics with neural
variational inference. In International Conference on Machine Learning, pp. 2410-2419, 2017.

Toma§ Mikolov, Anoop Deoras, Daniel Povey, Luka$ Burget, and Jan Cernocky. Strategies for
training large scale neural network language models. In 2011 IEEE Workshop on Automatic
Speech Recognition & Understanding, pp. 196-201. IEEE, 2011.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

M. Rieger, S. Ducasse, and M. Lanza. Insights into system-wide code duplication. In /7th Working
Conference on Reverse Engineering, pp. 100-109, 2004.

Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of Computer Pro-
gramming, T74(7):470 — 495, 2009. ISSN 0167-6423. doi: https://doi.org/10.1016/j.scico.
2009.02.007. URL http://www.sciencedirect.com/science/article/pii/
S0167642309000367.

Harshil Shah and David Barber. Generative neural machine translation. Advances in Neural Infor-
mation Processing Systems, 31:1346-1355, 2018.

Karen Sparck Jones. A Statistical Interpretation of Term Specificity and Its Application in Retrieval,
pp- 132142. Taylor Graham Publishing, GBR, 1988. ISBN 0947568212.

Jinsong Su, Shan Wu, Deyi Xiong, Yaojie Lu, Xianpei Han, and Biao Zhang. Variational recurrent
neural machine translation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27:3104-3112, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
caption generator. CoRR, abs/1411.4555, 2014. URL |http://arxiv.org/abs/1411.
4555

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo
Henao, and Lawrence Carin. Joint embedding of words and labels for text classification. CoRR,
abs/1805.04174, 2018. URL http://arxiv.org/abs/1805.04174,

Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep structure-preserving image-text embed-
dings. CoRR, abs/1511.06078, 2015. URL http://arxiv.org/abs/1511.06078\

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep learning code
fragments for code clone detection. In 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 87-98. IEEE, 2016.

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and Min Zhang. Variational neural machine
translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 521-530, 2016.

http://www.sciencedirect.com/science/article/pii/S0167642309000367
http://www.sciencedirect.com/science/article/pii/S0167642309000367
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1805.04174
http://arxiv.org/abs/1511.06078

A APPENDIX A: LISTINGS DEMONSTRATING THE TYPES OF CODE-CLONING

Listing 1: Original code
a, b = draws()

if (a == b):
X =X + 1
else:
x =y + 1

return func(x,y)

Listing 3: Type 2 clone

m,n = draws_alt ()
if (m == n):
p=p+1
else:
q=q+1

return func(p,q)

Listing 5: Original code
i, j=1;
for (i=1; i <= max_value; i++):
j o= jx*i

Listing 2: Type 1 clone
a,b = draws_alt()

if (a == b):
X =X + 1
else:
x=y+1

return func(x,y)

Listing 4: Type 3 clone
a, b = draws ()

if (a == b):
X =X + 1
k =5

else:

X =y + 1
k =3

func_alt (k)
return func(x,y)

Listing 6: Type 4 clone

def factorial(n):
if n == 0:
return 1
else:
return n x factorial (n—1)

	Context
	Relevant Literature
	Joint Embeddings
	Neural Machine Translation
	Neural code clone identification

	Research Question
	Aims and Objectives
	Significance of Research
	Future directions of research
	Appendix A: Listings demonstrating the types of code-cloning

