
GANs for synthetic image generation

Martin Ferianc, Divyansh Manocha
{mf2915, dm2515}@ic.ac.uk, CIDs:{00984924, 01053537}

1. Introduction
This report looks at training and testing of generative ad-

versarial networks (GANs) [1] to generate synthetic hand-
written digit images from the MNIST dataset [2]. Their
performance has been evaluated visually through inspection
and an inception score that was calculated using a LeNet
[3].

The MNIST dataset consists of 60,000 examples of
handwritten digits for training and 10,000 samples for test-
ing. Each example is a gray-scale 28×28 image, which was
zero centred to enable backpropagation of both positive and
negative gradients during training.

2. Deep-Convolutional Generative Adversarial
Network

GANs are an example of generative models. They at-
tempt to learn a distribution of the data pdata through max-
imum likelihood estimation to arrive at an approximation
of the model pmodel. Deep-convolutional GAN (DCGAN)
[1], similarly to class-conditional GAN (CCGAN) [4], does
it through the use of convolution and deconvolution layers.
2.1. Architecture

The design of the networks consists of two separate
parts: a Generator and a Discriminator. The task of the
generator is to generate new examples from random noise
and the task of the discriminator is to distinguish these gen-
erated examples from real ones.
2.1.1 Generator

Our architecture is based on the original DCGAN, seen
in Figure 1. First, the 1D noise input of length 100 is pro-
cessed through a fully connected (Dense) layer. Afterwards,
it is processed by batch normalisation (BN) [5], followed
by rectified linear unit (ReLU) [6] activation. We use BN
after each Dense or convolution to provide regularisation
to avoid overfitting and smooth normalised propagation of
signals. The nonlinear ReLU is used to address saturation
problems and vanishing gradients as a result of it. BN and
ReLU are again followed by a Dense layer and a BN and
ReLU, followed by reshaping function to reshape the out-
put into 3 dimensions. Then, it uses an upsampling layer,
which performs nonlinear deconvolution and thus generates
new data that is then later refined by convolution, which is
again followed by BN and ReLU. Afterwards, the features
are again upsampled to the original dimensions, followed
again by convolution.

2.1.2 Discriminator
A generator alone just creates random noise and it re-

quires guidance onto what images it should produce. The
discriminator learns the guidance through learning the deci-
sion boundary between input images being real or fake.

The discriminator begins with convolution to extract fea-
tures from the original image followed by BN and an ELU
activation which does not saturate its output at zero as ReLU
does, making training more efficient. Afterwards, the fea-
tures are refined by yet another convolution and the weights
are regularised through BN and outputted through ELU into
a pooling layer which selects the most significant features in
terms of magnitude. Lastly, it flattens the features which are
refined by Dense layers into a probability. The last stage of
the discriminator outputs a value through a sigmoid, as the
activation layer, to predict whether the input is real or a fake.

This work explores the capacity (number of channels) of
both networks by changing the parameter F . By changing
the networks’ capacity both networks will be able to ex-
tract/generate more distinct features which can result in a
more detailed image and better prediction. Another hyper-
parameter which can be evaluated upon is the balancing of
the discriminator and generator, by making the discrimina-
tor deeper. While the architecture of the generator is fixed,
we propose to observe the effect of empowering the dis-
criminator by including more convolutions - more powerful
feature extractors by changing D, as depicted in Figure 1.
2.2. Training
2.2.1 Loss-Function

The training of this joint network is achieved by alter-
nating gradient descent on the discriminator network, while
the generator’s weights are frozen and vice versa. In gen-
eral, GAN is optimising against a minmax game:

min
G

max
D

V (G,D) = Ex∼pdata(x)(log D(x))

+ Ez∼pz(z)(log (1−D(G(z))))

where the G corresponds to the generator and D corre-
sponds to the discriminator and x corresponds to the real
image data and z corresponds to the input noise, in this case
a 100 dimensional Gaussian with 0 mean and 1 variance.
This is a similar formula for the binary cross-entropy error
which is used as the loss function for training both the gen-
erator and the discriminator.

1



Figure 1: Proposed generative adversarial network architecture.

The objective of the discriminator is to maximise the
recognition rate, which corresponds to maxD The genera-
tor, wants to generate images with the highest possible value
of D(G(z)) to fool the discriminator, which corresponds
to minimising in minG. The equilibrium is achieved when
pmodel(x) = pdata(x) and the discriminator is unsure about
images being real or fake and giving D(x) = 1

2 .
A significant hyper-parameter is the batch size B, which

refers to the number of samples each network sees during
training at once, per iteration. The batch size can delay
or prevent mode collapse by encouraging diversity during
training and later during inference.

Overall, this work assumes three hyper-parameters for
experimentation: the capacity F , depth of discriminator D
and the batch size B. The multipliers B,F ranged from 1
to 3 while B was chosen to be 32, 64, 128. In total giving
27 combinations1.

We expect that the increasing batch size will accelerate
the training, while increasing D will delay mode collapse.
Increasing F can result in more detailed samples and better
prediction by discriminator.
2.3. Evaluation

The performance is evaluated by using the training ac-
curacy of the discriminator, visual inspection and losses of
the generator and discriminator to inform about overfitting
or underfitting.

Each combination was trained over 25 epochs with
Adam [7] being the optimiser with an initial learning rate
0.002 both for discriminator and generator. The loss func-
tions of both generator and discriminator as well as the
training accuracy of the discriminator can be seen in Fig-
ures 2, 3, 4.

We have observed that the simplest combination with F
and D both being 1 and with the batch size 32 achieved the

1For F = 3, D = 3 the GPUs run out of memory.

Figure 2: Training discriminator accuracy for DCGANs, the
first number in the name means the size of F , the second
number the depth D and the last number batch size B.

Figure 3: Descriptor loss for DCGANs, the first number in
the name means the size of F , the second number the depth
D and the last number batch size B.

Figure 4: Generator loss for DCGANs, the first number in
the name means the size of F , the second number the depth
D and the last number batch size B.
best overall results in terms of accuracy of the discriminator
and loss convergence. Samples taken from this network can

2



Figure 5: Sample images for DCGAN with F = 1, D = 1
& B = 32.
be seen in Figure 5. The discriminator accuracy stabilised
at the ideal 0.5.

It was interesting to note that the generator has 6,768,129
parameters while the discriminator has 307,737 parameters.
This network contradicts our initial hypothesis that a more
complex and balanced network are going to be better fit.
The simpler network outperforms the more complex ones,
as predicted through Occam’s razor, and it extracts enough
features given the complexity of the data. Computation-
wise this network requires the least resources in comparison
to other options.

We applied virtual batch normalisation to this network,
by randomly choosing half of the batch size in each epoch
and normalising the other half with respect to the chosen
one. The second half was different per each iteration. The
loss functions as well as discriminator accuracy can be seen
in Figures 13, 14 & 15.

However, we have not seen a significant improvement
and visually it produced worse results than unnormalised
network. That might be caused by too overextending nor-
malisation, given that it is already present after each feature
extractor both in generator and discriminator networks.

We have not observed the mode collapse in general with
the given combinations. The most common issue, espe-
cially seen in the more complex architectures, was that even
though the losses stopped decreasing the generator stopped
improving and visually judging, it produced unrecognisable
numbers.

3. Class-Conditional Generative Adversarial
Network

In comparison to the DCGAN, CCGAN accepts labels
both in discriminator and generator, which enables a gener-
ation of samples for a particular class which was previously
impossible.
3.1. Architecture

A subtle change in the network from the one seen in Fig-
ure 1, the label is simply concatenated into the Dense layer
in the generator with original number of nodes. In the dis-
criminator, the labels are processed first by a Dense layer
with 784 nodes and then reshaped into the image dimen-
sions and concatenated to the original input.
3.2. Training

With the influence of the label as an added input the cost
function now changes into:

min
G

max
D

V (G,D) = Ex,l∼pdata(x,l)(log D(x, l))

+ Ez∼pz(z),l∼pl(l)(log (1−D(G(z, l), l)))

where l represents the label and p(l) represents the distribu-
tion from which the label was uniformly selected for gen-
erator training and pdata(x,l) corresponds to the the original
distribution of labels. The objective does not change from
binary cross-entropy except the fact that the optimisers now
accepts an additional input, the label l.

We again perform experiments over the capacity F =
1, 2, 3, depth of discriminator D = 1, 2, 3 and the batch
size B = 32, 64, 128. In total giving 27 combinations, each
combination is being trained over 25 epochs with Adam op-
timiser and an initial learning rate being 0.0002 for both
discriminator and generator.
3.3. Evaluation

Given that the networks accept labels we can measure
inception score which was measured against a LeNet [3],
in Listing 1, which achieved 99.4% on the training set and
98.8 % accuracy on the test set respectively after 5 epochs of
training with the Adam optimiser. By visual inspection and
adding inception score into the observed metrics, depicted
in Figures 7, 16, 17 & 18 we conclude that again the sim-
pler networks outperform the more complex ones, but only
by a small margin, that could be broken by longer training
times. The best network was with F = 1, B = 64, D = 1,
giving 307,385 and 7,572,865 parameters per discrimina-
tor and generator respectively and 94.8% inception score.
The batch-size increased suggesting that the the gradient
descent should be smoother by averaging over more sam-
ples at once. This network required the least time to train
and it had the smallest memory footprint for its parameters.

We observe that by including the label into the input, in
comparison to the DCGAN, the quality of the sampled im-
ages improved as seen in Figure 6. The training of the gen-
erator is first biased towards more distinct numbers such as
0 or 2, which were overall learnt first and their distinctive-
ness can be demonstrated through the first two components
through principal component analysis (PCA) in Figure 8.
We also observe in Figure 16 that the discriminator accu-
racy stays rather constant since the beginning of the training
in comparison to the DCGAN’s varying discriminator ac-
curacy observed in Figure 2. In general, the generator was
more challenging to train in comparison to the discrimina-
tor whose accuracy achieved the ideal state of 0.5 already in
the early epochs.

Virtual batch normalisation again did not provide any
significant improvement, probably because of already in-
cluding BNs. However, label smoothing, through convert-
ing the labels into decimal one-hot encoding boosted the
inception score on average by 3% per epoch, which gave
the best overall inception score 97.6% for the best network.
The confusion matrix can be seen in Figure 8. The most

3



Figure 6: Sample images for CCGAN F = 1, D = 1 &
B = 64 with label smoothing.

Figure 7: Inception scores for CCGANs.

Figure 8: Left: Confusion Matrix for CCGAN F = 1, D =
1 & B = 64 with label smoothing Right: MNIST test data
projection through PCA.
mis-classified numbers were 2 and 3 which share certain
details in their shaping. It should also be noted here that
the MNIST dataset does not have equal proportions of sam-
ples for each class (number), which can affect the accuracy
observed. By inspecting the losses as well as the inception
score, we have not observed the mode collapse and our net-
work generates a rich variety of different samples for each
number.
4. Training with Synthetic Data
4.1. Generation

The samples obtained from the optimal CCGAN found
in Section 3 can be used to retrain the inception network.
The same number of images were kept for all training data,
also with respect to individual classes, and shuffled with
random seeds to ensure a fair comparison can be made.
4.2. Basic Approach

Considering the accuracy loss during testing to the one
obtained using 100% real training data (98.8%) in Figure 9,
it is clear that more real data and less synthetic data gives
better performance. Interestingly the training accuracy loss
seems to be smaller when either the synthetic or real dataset
dominates the input.
4.3. Strategy Reconsideration

Clearly even 10% of real samples gives a high recog-
nition rate, being the worst obtained performance. The two
hyperparameters of the network that could be explored were

Figure 9: Testing accuracy loss with mixed datasets (Left:
Unchanged, Right: Improvements).
the learning rate and batch size. To choose the optimal
learning rate requires a trade off between the convergence
time and reliability. Fine-tuning the learning rate of the net-
work (around the previously found optimal value) had little
effect (+/- 5%) on the recorded performance. The results of
optimising the inception network parameters are shown in
Figure 11. A learning rate of 0.001 was still the best for the
network. It was also observed that tuning the batch size for
learning rates that performed well also did not improve the
accuracy by any significant amount (+/- 1%). A batch size
of 32 was still the best.

Further analysis, however, showed that class 2 was of-
ten mis-predicted as class 0. As a result the percentage of
real and synthetic data was altered to achieve better results.
Previously all classes had the same percentage of synthetic
data, and the same number of samples per class. Interest-
ingly, performance did not always increase with a higher
percentage of real data for these classes. The best config-
uration was found to be to increase the percentage of real
data in class 4 to 40%, with all other classes remaining with
10%. The confusion matrices of with and without this ad-
justment are shown in Figure 10.
4.4. Comparison

The right graph of Figure 9 shows the improvement that
is being achieved by altering the combination of synthetic
and real data. Although, the overall results qualitatively re-
main the same, we were able to reduce the difference in the
testing accuracy loss achieved by approximately 0.5%.

From this experiment, the results achieved show that for
datasets of smaller dimensions (such as the MNIST hand-
written digits) it is possible to use GAN generated images
for data augmentation. This has been studied thoroughly in
[8]. However, for dataset such as this it may not be practi-
cally useful because the GAN itself needs a sparse dataset to
learn a varied distribution. If it is not, then generating these
images for training data on another model will not produce
a varied one; therefore biasing the model.

5. Comparison with Principcal Compoment
Analysis

With probabilistic PCA (PPCA) it is possible to gener-
ate samples from a learnt data distribution. However, this
is beyond the scope of this project. The dataset is small
enough to use standard PCA to generate images in a lower
dimensional space. Data augmenetation using PCA has pre-

4



Figure 10: Confusion matrix with mixed datasets (Left: Un-
changed, Right: Improvements).

Figure 11: Left: Examples of PCA dimensionality reduc-
tion and reconstruction of the data. Right: Test accuracy for
inception network.
viously been explored, for example by Krizhevsky et al. [9],
who used multiples of the principle components to generate
images of different intensity and colour.

With this particular dataset, one component is sufficient
for a human to visually discriminate between the numbers,
as illustrated in Figure 11.
5.1. Generation

From the MNIST dataset, all images belonging to a par-
ticular label were treated as the training data to PCA. n
components, corresponding to n eigenvectors of the highest
eigenvalues, were then extracted. Individual images were
then reconstructed into its original size of 28 × 28 pixels.
Hence, this can be considered a generative process.

In order to compare the two datasets, a common metric
was required. The inception score was used, as had been
used previously in this report to compare the performance
of the CCGAN.
5.2. Results

In Section 3, the CCGAN achieved 97.6% accuracy
against LeNet. This is what the PCA accuracy is expected
to converge to. As Figure 12 demonstrates, there is a large
difference in performance increasing the number of princi-
pal components initially. The improvement then saturated
post ∼64 principal components.

PCA with one component clearly performs considerably
worse than than the images generated from the best per-
forming CCGAN model. The inception score was almost
10% lower for PCA generated images with one principal
component. The confusion matrices were also plotted, as
shown in Figure 19.
5.3. Comparison

It should be noted that GANs are able to produce im-
ages by learning more complicated distributions than simple
linear PCA. This, however, does mean that they require a
much larger dataset than using the latter technique as a gen-

Figure 12: Inception score with varying number of principal
components from PCA.
erative model. Unlike PCA, GANs have numerous hyper-
parameters to optimise and are also more difficult to im-
plement. Their deep learning approach also make them a
black box, with little explainability and ability to infer the
model. PCA, which is a well-known technique, requires
fewer computational resources as well and it is much sim-
pler to implement.
6. Conclusion

In this work we conducted experiments with DCGAN,
CCGAN and PCA for generation of sample images based
on the MNIST dataset. The best DCGAN and CCGAN ob-
served were with F = 1, D = 1 and batch sizes B = 32
and B = 64 respectively. The best inception score that
was measured with the best CCGAN architecture achieved
97.6%. When augmenting the dataset with synthetic GAN
generated images, the best performance was achieved when
the entire real training data was used. When finding the
best performance of PCA as a generative model, it was in-
teresting to note that there were a points of significant sud-
den change in the gradient of Figure 12. Referring to it as a
saddle point, found to be at ∼64 components, it was chosen
to be the best dimensional space to generate images. This
is because higher dimensions introduced a significant time
penalty for an accuracy difference of approximately 1.5%.

We have observed that the more complex architectures
do indeed give a better performance by a small margin,
however, their use cannot be justified in terms of compute
time during inference and training as well as memory con-
sumption. It was found that GANs can be used for data
augmentation for the MNIST dataset, as even a small per-
centage of real data gives high accuracy. Similarly the PCA
analysis conducted shows that only 64 of the 784 potential
features of the images are required for a high performance.

In the future, the training could be further accelerated by
pre-training the discriminator before the training of the gen-
erator. We could have also run a Bayesian optimisation to
find the best networks, instead of a grid search. Bayesian
formulations of GANs [10] can also be used to give a better
performance, which usually does not require interventions
such as label smoothing or mini-batch discrimination dur-
ing training. As was mentioned in the discussion of Section
5.3, PPCA is another technique that should be explored for
a more thorough analysis of data augmentation.

5



References
[1] A. Radford, L. Metz, and S. Chintala, “Unsupervised repre-

sentation learning with deep convolutional generative adver-
sarial networks,” CoRR, vol. abs/1511.06434, 2015.

[2] Y. LeCun and C. Cortes, “MNIST handwritten digit
database,” 2010.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” in Pro-
ceedings of the IEEE, pp. 2278–2324, 1998.

[4] M. Mirza and S. Osindero, “Conditional generative adversar-
ial nets,” CoRR, vol. abs/1411.1784, 2014.

[5] S. Ioffe and C. Szegedy, “Batch normalisation: Accelerating
deep network training by reducing internal covariate shift,”
in Proceedings of the 32Nd International Conference on In-
ternational Conference on Machine Learning - Volume 37,
ICML’15, pp. 448–456, JMLR.org, 2015.

[6] V. Nair and G. E. Hinton, “Rectified linear units improve re-
stricted boltzmann machines,” in Proceedings of the 27th In-
ternational Conference on International Conference on Ma-
chine Learning, ICML’10, (USA), pp. 807–814, Omnipress,
2010.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014.

[8] A. Antoniou, A. Storkey, and H. Edwards, “Data aug-
mentation generative adversarial networks,” arXiv preprint
arXiv:1711.04340, 2017.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25
(F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[10] Y. Saatci and A. G. Wilson, “Bayesian GAN,” in Advances
in neural information processing systems, pp. 3622–3631,
2017.

Listing 1: LeNet Architecture implemented with Keras.

model = Sequential()

model.add(Conv2D(32, kernel size=(3, 3),

activation=’relu’,

input shape=(28,28,1)))

model.add(Conv2D(64, (3, 3), activation=’relu’))

model.add(MaxPooling2D(pool size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation=’relu’))

model.add(Dropout(0.5))

model.add(Dense(class dim ,

activation=’softmax’))

Figure 13: Generator loss for DCGAN with F being 1, D
being 1 and trained with batch size B being 32 together with
virtual batch normalisation.

Figure 14: Discriminator loss for DCGAN with F being 1,
D being 1 and trained with batch size B being 32 together
with virtual batch normalisation.

Figure 15: Discriminator accuracy for DCGAN with F be-
ing 1, D being 1 and trained with batch size B being 32
together with virtual batch normalisation.

Figure 16: Training accuracy for CCGANs, the first number
in the name means the size of F , the second number the
depth D and the last number batch size B.

6



Figure 17: Descriptor loss for CCGANs, the first number in
the name means the size of F , the second number the depth
D and the last number batch size B.

Figure 18: Generator loss for CCGANs, the first number in
the name means the size of F , the second number the depth
D and the last number batch size B.

Figure 19: Confusion matrices for PCA generated images
of n components being 1 (Left) and 64 (Right).

7


