
Codebooks for classification using Random Forests

Martin Ferianc, Divyansh Manocha
{mf2915, dm2515}@ic.ac.org, CID:{00984924, 01053537}

1. Introduction
This work demonstrates the application of Bag of Words

(BoW) on a classification task on the Caltech 101 dataset [1].
It uses SIFT [2] descriptors, which are subsequently quantised
into a codebook by a k-means or random forest (RF) algo-
rithms. Classification is performed by a RF.

The original Caltech 101 dataset contains small, centered
RGB pictures of objects belonging to 101 categories. For the
ten classes, 15 images were chosen for training and testing
respectively - eliminating the possibilities of a bias towards a
certain class.

2. Bag of Visual Words
BoW corresponds to a histogram of a number of occur-

rences of particular patterns in a given image. Using BoW
is advantageous because BoW enables to detect objects of
varying sizes and affine transformations, while obtaining low-
feature dimensions which are more compute and memory ef-
ficient.

We created a BoW representation using k-means and RF
algorithms. Both codebooks were created by first extracting
d = 128, d dimensional SIFT descriptors from all images.
Second, randomly selected 100k of these features were sam-
pled out of the training images to form a training set for cre-
ating the codebook by k-means clustering.

2.1. k-means
2.1.1 Vector Quantisation Process

The training set was used to create a codebook, consist-
ing of k codewords. The codewords corresponded to cluster
centres in the k-means algorithm. They also represent similar
original features.

We initialise the centres with the k-means++ [3] algo-
rithm. Then, we associate all features in the training set with
the nearest cluster. Subsequently the cluster centres are re-
computed with respect to their corresponding points based on
Euclidean distance. The k-means++ technique has the com-
pute complexity O(log k) and a guaranteed convergence. Af-
ter the convergence, each descriptor for each image is mapped
to the closest cluster centre to give a histogram of k bins per
each image in training and test sets. The mean histograms
corresponding to individual classes are shown in Figure 10.

Despite the simplicity, it should be noted that k-means only
converges to a local minima and is computationally demand-
ing, both during optimisation and testing. The procedure is
described in Listing 1.

Figure 1: Sample normalised quantisations for varying num-
ber of bins with k-means.

2.1.2 Vocabulary Size
As seen in Figure 1, if a small number of codewords, such

as k = 3, is used it can result in generalising and finally un-
derfitting to the data, where histograms might be similar for
images from different categories. A large value of k, for ex-
ample k ≥ 256 as seen in Figure 1, can however result in
overfitting to the train data. The new feature representation
will be fitted towards noise and dissimilarities. Although, not
conducted in this project, one method of estimating k would
be cross-validation.

2.2. Random Forest Classifier
The BoW created features allow a RF classifier to be fit to

the training images to classify objects into classes. The sum-
mation, instead of the product, of the tree outputs was used as
the fusion rule. This section provides an outline of the per-
formance optimisations conducted on the classifier with a k-
means codebook. This involved tuning the number of trees,
tree depth, randomness, vocabulary size and weak learners
for splitting. Whilst the selection of the hyperparameters was
largely based on the testing accuracy, the confusion matrices
were also taken into account.

The order of tuning was important, as conducting a full grid
search would be infeasible in the time frame of the project.
Tuning was therefore conducted individually, setting all but
one hyperparameter to be constant.

2.2.1 Number of Trees
Varying the number of trees, as shown in Figure 2, has

a large effect on the accuracy at lower values - thereby a de-
creasing rate of change. It is well known that a RF is able to
mitigate individual tendencies of trees to overfit. More trees
tend to provide better performance as the averaging effect is
observed. The example of Figure 9 also clearly demonstrates

1



this.
The computational times have been shown to increase ap-

proximately linearly. This is expected as theoretically to be
O(ntrees × nlog(n)), where n is the number of nodes. It
should be noted that it is possible to parallelise the training.
The optimal number of trees which was observed was 120.

Figure 2: Variation in the accuracy with respect to the number
of the trees (left). Variation in the computational time (right).
2.2.2 Maximum Tree Depth

The train and test errors with a varying number of max-
imum tree depth are illustrated in Figure 3. It is noted that
accuracy peaks in the middle of the graph, and is lower at ei-
ther end. This is because the RF classifier underfits the data
by over-generalisation with a shallow tree, and overfits as leaf
nodes have fewer points for a deeper tree.

The computational times have also been shown to increase
almost exponentially. This would be because the number of
nodes in a tree grow exponentially with the depth. Theoreti-
cally it should be O(ntrees × n× d), as the depth of nodes is
given by log(n). The beset value was at a depth of 13.

The confusion matrices allow us to make particular infer-
ences, that an aggregate metric such as classification error
cannot. It can be observed that the mis-classifications of a
particular class are more prevalent in forests with lower num-
ber of trees, as expected, but also a larger depth.

2.2.3 Randomness
At each node that is not a leaf, a left and right child node

retain the remaining data. The split itself is determined using
the weak learners explored in Section 2.2.4. Bagging often
leads to correlated trees if the dataset is not large, as is the
case here. The randomness of the forest is determined by the
number of split functions used. The information gain is max-
imised by increasing the randomness, increased by the num-
ber of random splits.

There was no significant gain in the performance metric by
increasing the number of splits, albeit there was a small in-
crease. However, the performance seemed to deteriorate after

Figure 3: Variation in the accuracy with respect to the depth
of the tree (left). Variation in the computational time (right).

Figure 4: Variation in the accuracy with respect to the random-
ness between the trees (left). Variation in the computational
time (right).

Figure 5: Variation in the accuracy with respect to the k-means
cluster size (left). Variation in the computational time (right).

more than 20 splits. As would be expected, the computational
time increased linearly. The optimal number of split functions
was observed to be 6.

2.2.4 Weak Learners
Two weak learners were explored, to split the dataset

at each node. The functions use a geometric primitive, ψ,
to separate the data. Axis-aligned weak learners splits the
data with a line ψ aligned with one of the axes of the fea-
ture space: h(v, θ) = [τ1 > ψ(v)θ > τ2]. The two-pixel
test uses more than one dimension as compared to the for-
mer mentioned function. It also approximates the gradient,
h(v, θ) = [xi − xj > τ ].

Both learners are relatively simple and have a small dif-
ference to the computational time, as observed. Axis aligned
was found to provide better results for the classifier with 47
% test accuracy over 43 % for the axis-aligned.

2.2.5 Vocabulary Size
The size of the BoW, k clusters, has a significant impact

on the performance metric.
There is observed to be a trade off between the training

time and the generalisations of each class inferred. Figure 5
shows that increasing the number of bins results in improved
classification accuracy, albeit a very small increase. It was
observed that a vocabulary size from 256 onwards did not im-
prove the performance by any significant amount, whilst still
increasing the computational time significantly. Overfitting
causes the accuracy to worsen thereafter.

The optimal hyperparameters as outlined above provide a
test acccuracy of 76%. The corresponding confusion matrix
is seen in Figure 7. A tendency to misclassify a particular
class as another is not observed, however classes 5 and 7 were
more often misclassified than the others as depicted in Figure
6.

2



Figure 6: Example cases of correct and incorrect classification
with k-means and a RF classifier.

Figure 7: Confusion matrices of the best performing tuned RF
classifier with k-means codebook (left) and tuned RF code-
book and classifier (right).

3. Random Forest Codebook & Random Forest
Classifier

3.1. Vocabulary Creation
A codebook may be constructed using RF instead of k-

means. The information from the SIFT descriptors (more
specifically a variant of them), returned from vlphow [4], are
used to construct the trees. Leaves of the RFs form as clusters,
equivalent to that in k-means, in the codebook. The vocabu-
lary size has the upper estimate, k ≤ n×2D−1, where n is the
number of trees and D their maximum depth. For the detailed
procedure refer to Listing 2.

For smaller trees, it is expected that k-means has superior
discriminating power. This method is not expected to out-
perform k-means in accuracy which makes use of all dimen-
sions simultaneously. It is also expected that the training time
will be lower. The training time complexity of k-means is
O(DN ′k), whilst it is O(

√
DN ′log(k)) for the RF. N ′ is the

number of patches, k the number of clusters and D is the di-
mensionality of the descriptor. Therefore, the codebook forest
is expected, and is observed, to be more efficient than its al-
ternative k-means construction.

3.2. Optimal Hyperparameters
The found optimal configurations can be seen in Table 1.

Corresponding accuracy and training graphs, similar to that
shown for the classifier, can be found in Figures 11 (number of
trees) 12 (tree depth), 13 (vocabulary size), 14 (randomness)
in the Appendix.

The corresponding confusion matrices can be seen in Fig-
ure 7. Classes 1, 3, 5 were often mispredicted as 10, 9 and 3

Table 1: Summary of the hyperparameter tuning using both
codebook generation methods with a RF classifier.

Hyperparameter k-means
Code-
book

RF
Code-
book

RF Clas-
sifier

Number of Trees N/A 50 120
Max Depth of Tree N/A 2 13
Number of splits N/A 4 6
Vocabulary size 256 64 120
Weak Learner N/A Two-

pixel
Axis-
aligned

Test accuracy 76.0% 56.0% Optimal

Train time 71.7s 58.5s Optimal

Figure 8: Training times (left) and test times (right) affected
by the vocabulary size to compare k-means with a RF code-
book. The measurement times are of growing the forest with
the same classifier, which includes generating the codebook.

respectively. In fact Class 1 was never predicted correctly.
3.3. Comparison

Through the analysis conducted above, a brief comparison
between k-means and a RF codebook was made. Overall ac-
curacy was significantly better (by almost 20%) for the best
k-means codebook and its classifier than the alternative, as
shown in Table 1. Whilst such a large difference could be
due to not reaching the optimal, it is certain that the k-means
achieved better performance.

Consider the effect of varying the vocabulary size on both
methods, as seen in Figure 8. From the discussion in sec-
tion 3.1, it is expected that k-means has a linear computational
complexity, whilst the RF will have a logarithmic complexity
with respect to the vocabulary size. This is corroborated by
our findings shown in Figure 8.
4. Conclusion

A brief comparison of the acccuracy and training time of
the two methods of codebook generation has been articulated
in Section 3.3. Considering the small forest construction re-
quired and its metrics in Figure 8, it was found that random
forests scale better than k-means. However, the complexities
associated with achieving a richer codebook are drawbacks
that one must consider. Further work may involve cross val-
idation to pick the optimal hyperparameters. Perhaps with
more computational power and time, a more thorough anal-
ysis can be produced. Alternatively a minibatch approach to
k-means may be used as an alternative to reduce the computa-
tional costs.

3



References
[1] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual

models from few training examples: An incremental bayesian
approach tested on 101 object categories,” Computer Vision and
Image Understanding, vol. 106, no. 1, pp. 59–70, 2007.

[2] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, pp. 91–110, Nov.
2004.

[3] D. Arthur and S. Vassilvitskii, “K-means++: the advantages of
careful seeding,” in In Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2007.

[4] A. Vedaldi and B. Fulkerson, “VLFeat: An open and
portable library of computer vision algorithms.” http://
www.vlfeat.org/, 2008.

1. Randomly initialise k Clusters;
2. Split features randomly to k groups;
while !Stopping criterion do

for Point in Data do
Calculate distance to cluster centres;
Sort distances;
Reclassify features w.r.t. to minimum distance to

cluster;
end
Recalculate new clusters k based on point means;

end
histograms = None
for image in set do

for features in image do
n = Find nearest cluster from; k
histograms[image][n]+=1; //Increment bin in
image histogram corresponding to bin

end
end

Algorithm 1: Bag of Words k-means Algorithm.

Figure 9: An example of the confusion matrices produced by
two models with the same unoptimised hyperparameters, ex-
cept for the number of trees (70 left, 140 right).

1. Set the parameters of the tree (depth, weak learner,
optimisation function);

while !Stopping criterion do
if Leaf node then

Store labels and features; Compute statistics;
end
else

Choose a feature for split;
Compute gain by splitting;
Split and create nodes;
Continue for each child node;

end
end
histograms = None
for image in set do

for features in image do
leaf index = Traverse tree with features
histograms[image][leaf index]+=1;
// Increment bin in image histogram
corresponding to the leaf node

end
end

Algorithm 2: Bag of Words Random Forest Algorithm.

Figure 10: Normalised class means for different classes using
k-means.

Figure 11: Variation in the accuracy with respect to the num-
ber of the trees (left). Variation in the computational time
(right).

Figure 12: Variation in the accuracy with respect to the depth
of the tree (left). Variation in the computational time (right).

4

http://www.vlfeat.org/
http://www.vlfeat.org/


Figure 13: Variation in the accuracy with respect to the k-
means cluster size (left). Variation in the computational time
(right).

Figure 14: Variation in the accuracy with respect to the ran-
domness between the trees (left). Variation in the computa-
tional time (right).

5


